Strain-guided mineralization in the bone–PDL–cementum complex of a rat periodontium

نویسندگان

  • Kathryn Grandfield
  • Ralf-Peter Herber
  • Ling Chen
  • Sabra Djomehri
  • Caleb Tam
  • Ji-Hyun Lee
  • Evan Brown
  • Wood R. Woolwine
  • Don Curtis
  • Mark Ryder
  • Jim Schuck
  • Samuel Webb
  • William Landis
  • Sunita P. Ho
چکیده

OBJECTIVE The objective of this study was to investigate the effect of mechanical strain by mapping physicochemical properties at periodontal ligament (PDL)-bone and PDL-cementum attachment sites and within the tissues per se. DESIGN Accentuated mechanical strain was induced by applying a unidirectional force of 0.06N for 14 days on molars in a rat model. The associated changes in functional space between tooth and bone, mineral formation and resorbing events at the PDL-bone and PDL-cementum attachment sites were identified by using micro-X-ray computed tomography (micro-XCT), atomic force microscopy (AFM), dynamic histomorphometry, Raman microspectroscopy, AFM-based nanoindentation technique, and were correlated with histochemical stains specific to low and high molecular weight GAGs, including biglycan, and osteoclast distribution through tartrate-resistant acid phosphatase (TRAP) staining. RESULTS Unique chemical and mechanical qualities including heterogenous bony fingers with hygroscopic Sharpey's fibers contributing to a higher organic (amide III - 1240 cm-1) to inorganic (phosphate - 960 cm-1) ratio, with lower average elastic modulus of 8 GPa versus 12 GPa in unadapted regions were identified. Furthermore, an increased presence of elemental Zn in cement lines and mineralizing fronts of PDL-bone was observed. Adapted regions containing bony fingers exhibited woven bone-like architecture and these regions rich in biglycan (BGN) and bone sialoprotein (BSP) also contained high-molecular weight polysaccharides predominantly at the site of polarized bone growth. CONCLUSIONS From a fundamental science perspective the shift in local properties due to strain amplification at the soft-hard tissue attachment sites is governed by semiautonomous cellular events at the PDL-bone and PDL-cementum sites. Over time, these strain-mediated events can alter the physicochemical properties of tissues per se, and consequently the overall biomechanics of the bone-PDL-tooth complex. From a clinical perspective, the shifts in magnitude and duration of forces on the periodontal ligament can prompt a shift in physiologic mineral apposition in cementum and alveolar bone albeit of an adapted quality owing to the rapid mechanical translation of the tooth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Adaptive Nature of the Bone-Periodontal Ligament-Cementum Complex in a Ligature-Induced Periodontitis Rat Model

The novel aspect of this study involves illustrating significant adaptation of a functionally loaded bone-PDL-cementum complex in a ligature-induced periodontitis rat model. Following 4, 8, and 15 days of ligation, proinflammatory cytokines (TNF- α and RANKL), a mineral resorption indicator (TRAP), and a cell migration and adhesion molecule for tissue regeneration (fibronectin) within the compl...

متن کامل

A cell line with characteristics of the periodontal ligament fibroblasts is negatively regulated for mineralization and Runx2/Cbfa1/Osf2 activity, part of which can be overcome by bone morphogenetic protein-2.

The periodontal ligament (PDL) is a connective tissue located between the cementum of teeth and the alveolar bone of the mandibula. It plays an integral role in the maintenance and regeneration of periodontal tissue. The cells responsible for maintaining this tissue are thought to be fibroblasts, which can be either multipotent or composed of heterogenous cell populations. However, as no establ...

متن کامل

A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex.

This study describes the design of a biphasic scaffold composed of a Fused Deposition Modeling scaffold (bone compartment) and an electrospun membrane (periodontal compartment) for periodontal regeneration. In order to achieve simultaneous alveolar bone and periodontal ligament regeneration a cell-based strategy was carried out by combining osteoblast culture in the bone compartment and placeme...

متن کامل

Discontinuities in the human bone-PDL-cementum complex.

A naturally graded interface due to functional demands can deviate toward a discontinuous interface, eventually decreasing the functional efficiency of a dynamic joint. It is this characteristic feature in a human bone-tooth fibrous joint bone-PDL-tooth complex that will be discussed through histochemistry, and site-specific high resolution microscopy, micro tomography(Micro XCT™), X-ray fluore...

متن کامل

بررسی هیستولوژیک اثربخشی Enamel matrix derivative در Surgical defect دندان گوسفند

The aim of the present study was the histological evaluation of Enamel Matrix Derivative (EMD) effectiveness for regeneration of periodontal defects. EMD activates cementum synthesis, PDL and bone during the maturation stage of follicole. In this research, EMD was used in surgical defects of premolar teeth in four adult sheep. Muccoperiosteal flap was reflected in buccal site of teeth. The bucc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015